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FOREWORD

This report combines and supersedes two previous reports (TPRC Reports 20

and 22) issued as interim and final reports to an AFOSR grant for studies on substances
of potential use in the gas laser area. The merging of the two previous reports for

convenience has necessitated some rearrangement of the text. In addition, a number

of typographical errors have been corrected.

The Thermophysical Properties Research Center (TPRC) was founded on

1 January 1957. Due to the enlargement of the scope of its research operations after

seventeen years, TPRC and the other affiliated Centers were restructured effective

1 July 1974 to have an umbrella organization, known as the Center for Information and

Numerical Data Analysis and Synthesis (CINDAS), to comprise all the Centers.

The present report, which is Number 29 in the original TPRC Report series,

is therefore designated CINDAS-TPRC Report 29.

.I
4
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ABSTRACT

Tables of viscosity, thermal conductivity, and diffusion coefficient have been

prepared for one hundred seven binary mixtures and for nine pure substances, the latter

being helium, atomic and molecular hydrogen, atomic and molecular deuterium, atomic

and moleculav fluorine, hydrogen fluoride, and deuterium fluoride. Most of the binary

mixtures are combinations of these substances. The temperature range was from 100

to 3000 K. Por the pure substances, the most recent recommendations were used and

for the mixtures, the Lennard-Jones 6-12 potential was used for viscosity and diffusion,

and a linear mixing rule was employed for thermal conductivity. The precision of the

tabulated values is reviewed. The present state-of-tho-art in predicting these properties

is briefly surveyed. It is concluded that significant discrepancies can still exist between

theoretical and experimental quantities.

...........................- -....
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I. INTRODUCTION

This report, an amalgamation of two earlier reports [1, 2] ', presents calculated

values of the viscosity, thermal conductivity, and Ficidan diffusion coefficient for gases

and gas mixtures of interest to laser technology. The theoretical background is first

briefly reviewed in order to acquaint the reader with the basis used in assembling our

tables and to give him an idea of the assumptions made in the work. This background

will also enable him to apply our tables in any calculations which he may desire to make.

The methods which were used to prepare the input to our calculations are then reviewed
and are followed by the tabulated values.

II. THEORETICAL AND EMPIRICAL METHODS

The three transport properties, viscosity (p), thermal conductivity (k), and

diffusion coefficient (D) can be defined from the equations

dp 0 -jA 6 dt
M I

dq = -kA dt

dm a -DA a dt

which relate the fluxes of momentum, heat and mass to the respective gradients of velocity,

temperature, and concentration.

The Chapman-Enskog theory represents a solution of the Boltzmann integro-

differential equation in which equations for the transport properties result. In COS 1571
units,

107 Am 266. 93 MT" (gn om"1 se-i) (1)
0". r (kT/c)

10O k 19 M '.1 (cal om 1t sec-t Kc-) (2)

105 D . T 62 (cm2 see. 1 ) (3V)

are the three first approximation equations, where T is the absolute temperature and

the omegas are "collision integrals". Other quantities include M for molecular weight

and P for pressure. Higher approximations involve additional multiplicative factors

1' Numbers in square brackets designate references listed in Section V.
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in the above equations. As will be noted below, to the accuracy possible in the present

work, these higher approximations will be ignored.

Various l.nmitations exist in the above equations due to assumptions made in their

derivation. These include (1) only two body collisions occur, (2) that "classical" rather

than quantum statistics apply, (3) that all gradients are small, (4) that the theory will

be applied to systems where the dimensions are much greater than those between particles

comprising the systems, and (5) that the intermolecular force field is spherically sym-

metrical. These restrictions, in practice, mean that the theory is usually valid for reason-

ably dilute gases at normal to high temperatures. The "reasonable" dilution implies

that our equation of state can be written as PV = RT + BT P, while "normal to high" im-

plies that the temperatures are neither so low nor so high that quantum or dissociation

effects occur, respectively. The most severe restriction is that the intermolecular force

field be symmetrical. While, at first thought, this should restrict our attention to the

monatomic gases, it is found that diatomic and (some) polyatomic gases can also be

represented In this way. The main modifications which result with polyatomic gases

are (1) that dipole moments exist (these lead to corrections due to polarity), and (2)

that internal degrees of freedom contribute to the thermal conductivity. These lead to

Eucken type corrections due to internal degrees of freedom. (Both corrections are trouble-

some and will be discussed below. ) The basic result theoretically is thus contained in

the statement that if the law of forces between the molecules in a dilute gas is known,

the collision integrals (the (1i, and n 22 of equations 1-3) can, at least in principle, be

calculated and thus their variation with reduced temperature, TV' = kT/c (where C is

the well-depth in the intermolecular potential function), can be found. Some considerable

attention was paid in the early stages of this work to reviewing the ability and adequacy

of present day treatments to evaluate the intermolecular force field function and thus the

collision integral (omega) functions. Two standard works exist on this subject - the 1954

"Molecular Theory of Gases and Liquids," reprinted with Notes Added in 1964 [3] and

the third edition in 1970 of "The Mathematical Theory of Non-Uniform Gases" [4]. As

might be inferred from the titles, the second citation is more mathematical. It also

contains a slightly less detailed account of the comparison of theory and experiment.

Due to the fact that the 1964 updating in the 'Notes Added' of [3] is only barely

adequate - a fact noted elsewhere [51 - the review of theoretical methods made here ex-

tended to a somewhat earlier date. Essentially, 1954 can be considered as representative.

The position in 1954 was that the Lennard-Jones 6-12 intermolecular potential

function had found wide application in calculations of equilibrium and transport properties.
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The indices 6 and 12 refer to the (negative) exponents of the intermolecular separation

r which have a physical significance in representing attractive and repulsive forces be-

tween molecules respectively. At that time, reasonably good agreement was thought
to exist between many of the experimental and theoretical predictions.

Since that time, many further studies have been made. In 1963 it was noted [61

that errors existed in the collision integrals of [3] and a retabulation was made. Further

recalculations have also been made (see, e. g. [71 ) and a later recommendation [81 used

the values of [61 at reduced temperatures (TV = kT/c, where ( is the well-depth in the

potential and It is the Boltzmann constant) up to 4. 5 and those of [71 at higher temperatures,
In the present work, our earlier values of collision integrals [61 were used for reduced

temperatures below 10 and those of I71 above this value. No significant difference exists

between the present and [81 choices. The present one was made solely for ease of
interpolation.

Other molecular models have been used since the publication of the original [31

review. An extensive investigation of these was made by Klein and associates [9-111 .
Whichever model is used, the result is that the representation of both second virial coef-

ficient and viscosity data over a relatively wide temperature range is equally good for j
many fluids. The range for transport properties is about 2 , T,' .r 5 where the (/k in
the T*' refers to the value determined using the 6-12 parameter. The adjective "about"

refers to the fact that available viscosity data are imprecise - a statement that will be

amplified during the discussion of the tabular values below.

The temperature range of interest to the present program involves reduced
temperatures (on the Lennard-Jones 6-12 scale) of 0.4 to 70, depending on substance.

Particularly for the light gases and mixtures, reduced temperatures above 5 occur.
In this region the energies of intermolecular collisions may be large enough that the

attractive forces play a relatively weak role. This is confirmed by an examination of

the tables of Klein [71 for the Lennard-Jones m-6 potential, where, in addition to the

value of m - 12 previously discussed, Klein tabulates collision integrals njt and n22

(and other functions) for m w 9, 15, 18, 21, 30, 50, and 73, If one plots the collision
integral Ch2 as a function of T* on logarithmic paper, one can conclude that the repre-

sentation n22 = a(T9) n is a quite accurate approximation for reduced temperatures above

about 15. Furthermore, one can conclude that a definite relationship exists between

the n and m. Finally, that the rigid sphere repulsion force model is approached as m

increases, These results check with the assumption 13,41 that 1 A AT' if the repulsive

potential only exists.
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The m-6 model was then refined by Hanley and Klein f12,13] to the m-6-8 model,

where the 8 refers to the dispersion forces. (For a description of these, see, e. g. page

29 of 131,) The initial expectation was that the coefficients A8 and A8 in the equation

E(r) =Ar- + Ar + Bmrm (4)

in this m-6-8 potential should be reconcilable with theoretical estimates, However,

the results [131 of comparing theory with experiment have proved disappointing. The

following extracts from 1131 may prove informative.

1 (page 1747): AMW spherical potential can never properly depict the interaction

between two polyatomic molecules - as the molecules collide a number of

orientation-dependent force laws are followed - one for each relative orientation.

2 (page 1747) : Collisions between polyatomic molecules can be inelastic. The

effect of the molecular internal degrees of freedom has then to be considered.

3S In addition, the discussion on pages 1750 and 1751 shows that the coefficients

A6 and A8 deduced from theory and experiment agree poorly. On page 1751

it is stated that "adding more parameters to our potential for additional flex-

ibility would not necessarily reduce the disagreement with theory even when

additional parameter are added to the most uncertain part of the potential,

the repulsive branch."

Difficulties also exist for fluids for which several transport properties have

supposedly been accurately measured. Hanley, McCarty, and Intemann (141 were unable

to reconcile extremely carefully calculated and measured thermal conductivities and

viscosities for hydrogen. This was also noted for inert gues by Kestin [151 . Both workers

favored the viscosity data, supposing an (uncertain) error to exist in the thermal con-

ductivities. However, both workers relied on the basic accuracy of the Chapman-Enskog

theory. Another difficulty was noted by Dahier 1161 who said that there was a remote

possibility of failure due to this theory. A stronger viewpoint is taken by Brush (17l

who decided that the interatomic force concept was inadequate. This is a conclusion

backed by at least plausible arguments which he makes - one of which is identical to the

first cited remarks of (131 above.

All of these results are disturbing to a short term program to calculate transport

properties. In addition to the above the writer consulted 118-221 and many other less

detailed reviews in which further studies of interatomic and intermolecular potentials

result. Another viewpoint can be taken which is scientifically more pessimistic but which

Ik



can yield results of somewhat predictable accuracy. That is, choose a potential for which

the collision integrals and related functions are reasonably accurate and available. Fur-

thermore, use reasonably accurate parameters in the sense of Klein [91. This should

secure at least reasonable results in the reduced temperature range 2 5 T1 ! 5 and pos-

sibly for 2 ! T, f 10. While the accuracy at higher temperatures may be marginal the

hope is to adjust the fit by varying the repulsive index.

In this work, following the survey which led to the conclusions above, the Lennard-

Jones 6-12 potential was selected for generation of the tabular values. While some m-6

fittings for simple gases have been made, the availability of data could not in the time

available lead to accurate values of m for mixtures. The values of the collision integrals -

and the fittings - for the m-6-8 potential have not yet been published*'. However, some

predictions of the third virial coefficient using it were in disappointingly poor agreement

with experiment [241.

One can conclude that no intermolecular potential is capable of representing the

data for all properties to within the experimental error. This is dun to orientation effects

and inelasticity in collisions coupled with the inability to perform the mathematical cal-

oulations to sufficient accuracy and the fact that high energy collision and spectroscopic

data may yield still different intermolecular potential values. This conclusion is in part

supported by a subsequent analysis [54, 51 of the ability of the m-6-8 potential to simul-

taneously fit viscosity and second virial coefficient data for non-polar polyatomic gases.

It was found that additional terms were necessary to represent the virial coefficient be-

havior. This implied that a more comprehensive potential should then likewise be used

to calculate the viscosity (and, of course, other properties). This is an enormous com-

pliation, both from the fundamental difficulty of calculating functions for comprehensive

potentials and from the more practical viewpoint of fitting such potentials to the exper-

imental data. While it is stated [551 that "work is in progress to modify the m-6-8

potential to include non-spherical effects" one reads on the same page that "one assumes

that the molecules collide with a fixed relative orientation and collision integrals are

calculated for each orientation independently. The final values of the collision integrals

are then determined by a statistical averaging over all these possible orientations".

Here is the important fact that the calculations to date assume a fixed relative orienta-

tion. This, coupled with the averaging requirement will, in the opinion of the writer,

introduce sufficient uncertainty so as to negate possible improvements by modifying the

potential. Indeed, it appears probable that this stage has already been reached from

"' The report "Tables of Collision integrals and Second Virial Coefficients for the (m, 6, 8)
Intermolecular Potential Function" by Klein, Hanley, Smith, and Holland has since
(June 1974) been published as NSRDS-NBS-47, 157 pp., 1974,
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a fundamental viewpoint by the failure of the potential to correctly model the dispersion

coefficients, as already mentioned in the discussion of Eq. (4). An extensive review

(221 of some aspects of intermolecular forces does nothing to dispel the conclusion that

realistic potentials are not yet available for molecules of complex structure. As remarked

by Svehla [231, unless a consistent potential is selected, values of combinations (such

as the Prandtl Number) of properties may vary irregularly from substance to substance.

This is even more important in preparing tables for mixtures for which the composition

varies. Hence, in the present work, the Lennard-Jones 6-12 potential was selected as

the general basis for generating the tabular values rather than a more sophisticated model.

III. EQUATIONS FOR CALCULATING TRANSPORT PROPERTIES OF

PURSE GASES AND GAS MIXTURES

1. GENERAL DISCUSSION

As noted above, Eqs. (1-3) represent first approximation equations for the

variation of these properties with temperature for pure gases. In order to use them,

the collision diameter, a, must be known. In addition, the well depth (/k is needed so

that the collision integral (l1 , or 121 can be determined for the particular reduced tem-

perature T*' of kT/A of interest.

The result of detailed calculations has been to reproduce tables of ClI and/or
C12 an a function of T':'. An early example appears in 131]. Later tables were intercom-
pared in [61 and again in [71 . The reader is referred to (61 for the extensive (3, 320 a

values) tables of ljj and n 22 used in this work for reduced temperatures below 10. Table

117 contains original and interpolated values of [71 for C1 i, 22, and A, all as functions

of kT/( for the Lennard-Jones 6-12 potential. (The A function is described in the see-

tion on viscosity of mixtures. ) While various attempts have been made to represent the

variation of these functions with reduced temperature analytically, most of these have

suffered from the difficulty that the tables of 131 were used as inputs to the analyses.

As noted elsewhere [6-8], the (31 tables do contain relatively large errors. Thus, the

analyses need repeating using more accurate input. While two recent studies have ap-

peared (8,251 which use the (71 tables am input, it was not considered feasible to program

these in time for the present report. The more recent fits [8, 251 also are limited to

the (12,6) potential. It is considered desirable to derive a convenient representation

for the (i, 6) or, even better, for the (m-6-8) model. To allow for the polar-nonpolar

interactions, possibly a (3-m-6-8) function should be devised.
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2. VISCOSITY

Lacking such input at the present lime, the omega tables of 161 and [71 were used

numerically, in the ranges as described above, with Eqs. (1-6) 1, to generate the present

tables. The parameters a and i/k were taken from the work of Svehla 1231. This is

the main previous effort to present a unified body of thermal conductivity and viscosity

data based on a common potential and, furthermore, which selects molecular parameters

which are reasonably self-consistent, By this is meant the fact that the estimation methods

for compounds result in parameters which yield reasonable agreement with experimental

data for compounds. The adjective reasonable is used to note that better agreement for

specific properties and substances has been obtained by using different potentials. Pre-
sently lacking anywhere in the literature is a complete across-the-board reanalysis,

except possibly for the inert gases [e. g. 151. The comparisons for thermal conductivity

in (26-281 do reveal that the Svehla values may be in error by possibly up to twice the

accepted limits for some substances. For other materials, a very reasonable fit occurs

in general.

For interpolation purposes, linear interpolation of the present tables is considered

perfectly acceptable. If an empirical representation is needed, it is suggested that the

Sfunctions of Eqs. (1-3) be replaced by

Sa + b/T +o/T2 +d/T3 (5)

As will be evident from [28-301, use of Eq. (5) to represent, viscosity and thermal con-

ductivity results in negligible errors over large temperature ranges, even using d As 0

In many cases.

For mixtures, the equations are considerably more complex. For gaseous viscosity

the mixture viscosity, MM, is given by

I +Z (

where
xil 2xixg xg l

x - + - -

.A c±2 Mi 2x1 x2 (MI +M2)2  X22 e
lu-72- + MuA 1M 2g2i

'12 [(MI +M2 ) M2
4M1M2  7+ ) ,

~'See 1571 .



In these equations M1, M2 , xi, and xc are the molecular weights and mole fractions of

components 1 and 2 and the 1At, •12, and Ig represent the viscosities of component 1,

a hypothetical gas 12 and component 2. The gas 12 is assumed to obey the same poten-
tial as games 1 and 2 but to have a molecular weight of 2M1 M2/(M 1 + M9), a collision
diameter of (a, +a2)/2 and a well depth q/k of (c1/k) (42/k). A12 in a collision inte-

gral function (31, tabulated simply as A in Table 117.

In the various tables, the three columns under viscosity are values of 1tt, 1A 12
and IA2 for the different temperatures listed. As shown by Table 117, A varies from

1. 1105 at a reduced temperature of 10 to 1.1323 at T* - 100, or 1.1214 + 0, 0109 over
this temperature range. To a better precision, the approximation

A = 1,09340 +0.020 log T* (7)

will represent the [71 A values for 15 -g T* ! 100 to an average error of 2 x 10-4 and a
maximum error of I x 10-3 in A. This approximation may be found useful in program-

ming Eq. (6).

For multicomponent mixtures and for higher approximations, the careful
comparisons of theory and experiment by Brokaw, et al. 131,321 may be found useful.
The lack of accurate experimental data for most of the mixtures considered here was

one reason why the higher approximation equations were not oonsidered further in the
present work.

3. THERMAL CONDUCTIVITY

Equation (2) above for thermal conductivity is only found to be applicable to the

calculation of thermal conductivity for monatomio species, where no contributions of
internal degrees of freedom to the thermal conduotivities occur. The classical paper

on the subject since (31 in that of Mason and Monohick [331 where polyatomic and polar

games were considered. In addition, Chapter 13 of [41 provides an excellent review,

as do publications by Brokaw [341 and by Touloukian, Liley, and Saxena [271. The equa-
tions involved are complex and the reader is referred to the cited sources for details.

The conclusion one can draw from a study of these works is that even an extremely thor-
ough and painstaking analysis can result in thermal conductivity values and/or the related

Euoken factors that disagree significantly with experiment. The publications by Hanley,

et al. (141 and Kestin [151 may also be cited here. Further evidence of disagreement
may be found in (33,351. For many substances, simple equations representing the ther-
mal conductivity as linear and quadratic functions of temperature have been found adequate

[28-30, 36, :371 as has also the representation of Eq. (2) where the omega function

"• • . ... " •*'• • • ' • . ' ' ... . . ' .. . . " . . . .. . . •• . . . . . .. ... . . . .. .. . .. .... . . . . ... .. .. . ... . ...•+. ... ,
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approximation of Eq. (5) is used 128-301 . The conclusion to be drawn from this is that

the relative magnitude of the internal contributions to the total energy decreases to about

a constant value at high temperatures. While it cannot be neglected, the approximation

of Svehla 1231 can be seen from the comparisons in 128-30a to yield reasonably accurate

results at high temperatures, though not at low temperatures. Hence, in this work,

values based essentially on experimental data were used for the elements and simple

compounds and were taken from 126-291. For other compounds the values of [231 were

used, or analogous estimation methods.

The computer print-out was, in fact, programmed so that many of the tables of

viscosity and diffusion coefficient appearing in this report are edited copies of the com-

puter sheets. The thermal conductivity values were based on experimental data, cor-

related with theory if possible as described in 1291 , or were generated by applying

corrections for internal degrees of freedom to the calculated translational effect. In

the latter case, some substances showed a significant divergence between the theoretical

and the experimental values. In such cases, the calculated values were reduced to bring

them into general accord with the experimental data. In our programming we adopted the

fittings of Neufeld, Janzen, and Aziz 125] to generate the 6-1k collision integrals. It

should be noted that their representation is only valid for reduced temperatures from 0. 3

to 100 and not from 0. 1 to 0. 3 or from 100 to 400. Some problems were encountered be-

fore this fact was realized. While the lower end gives no practical difficulty, substances

with low characteristic well depths, g/k, can yield reduced temperatures over 100. A

suitable blocking procedure was thus written into the program to prevent the computer

extrapolating the calculation into regions where the reduced temperature exceeded one

hundred. For the few cases where this occurred, tables were numerically generated

using the approximations

(Ili = 1. 10670 (TO) -. iMn
(4)Ct2 - 0. 07 183 (TOS)"-11•' - 12)

which have been found to yield collision integrals accurate to 1/4 percent for reduced

temperatures over 25. In fact, the use of the Lennard-Jones potential at such high re-

duced temperatures is physically unrealistic due to the predominance of the repulsive

part of the potential for which an exponential dependence on intermolecular separation

is preferable to a power one, although, as mentioned earlier, neither representation

is exact.

For mixtures, the equations are even more complicated and the analysis of [271

centered on approximations for the functions equivalent to the A1 2 of Eq. (6). A careful
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study was made of the thermal conductivity - composition curves of [271 but no simple

trends were evident. A cogent comment was made by Lehmann [381 and cited by

Bretsunajder [391 that simple linear additivity is as reasonable as more sophisticated

calculations for binary mixtures for which the molecular weight of the pure components

do not differ by more than a factor of 4. Examination of the graphs of [27] reveal that -

in a surprisingly large number of cases - the variation with composition is essentially

linear, even for some mixtures where exceptions might be expected to occur. A more

accurate calculation would involve knowledge of relaxation times, some of which are

now available under an AFOSR contract (401. In any future work on these substances,

or those of lower priority, it is considered highly desirable to attempt to establish at

least a function correlation of Eucken factor with molecular weight and/or chemical

structure.

The thermal conductivity columns in the tables thus present values for the pure

component and for the equimolar mixture. hi .%ny future work it is only anticipated that

the equimolar values may show significant chtnges.

4. DIFFUSION COEFFICIENT

For diffusion coefficient values, Eq. (3) may be used for the self-diffusion

coefficient and for interdiffumion, the equation is similar to (3) except that the a and

the ' now refer to a hypothetical gas 12, just as for viscosity. No attempt was made
to introduce a variable coefficient into Eq. (3), as suggested by Wilke and Lee [411.

The three diffusion coefficient columns, tabulated for atmospheric pressure, list

self-diffusivity for the pure components and the interdiffusion for the binary pair.

IV. REVIEW OF INFORMATION AVAILABLE ON TRANSPORT PROPERTIES
FOR SUBSTANCES OF INTEREST AND OF METHODS USED TO PR•EPARE
TABLES OF RECOMMENDED VALUES

1. DEUTERIUM

The Lennard-Jones potential and parameters of Svehla (231 were used to calculate

the viscosity and diffusion coefficient values. The thermal conductivity values to 400 K

[29, 531 were extrapolated using a log-log plot.

2. HELIUM

Until recently, up-to-date information on the properties of helium has been

nonexistent. Within the last few years the position has changed for the better.

,,~ ~.
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For the viscosity, the tables of Maitland and Smith 1421 , Watson 1431 , and

Petersen [44] are in very good agreement. In somewhat less good agreement are the

Tsederberg, at al. tables [451 while Angerhofer and Henley [461 present tables for rel-
atively low temperatures. The values presented here are essentially a mean of the [42-44]
sets for temperatures to 2000 K. Values at higher temperatures were derived from an

analysis of the lower temperature values which showed that M - aTn where n - 0. 702.

The tabular values were actually derived by assuming n to be a weakly varying linear

function of temperature. The agreement between our tabulated values and any of the

source values listed above is well within five percent. The absolute accuracy may, in

fact, be a little better than this figure.

Thermal conductivity values to 2500 K have been tabulated by the author elsewhere

128, 291. The present tables are merely a reproduction of these with a finite difference

extrapolation to 3000 K. From 100 to 700 K the accuracy should be two percent, from

700 to 1500 K five percent, and above 1500 K ten percent.

Values of the diffusion coefficient were obtained using the equation suggested in

the Mason and Marrero 1471 compilation for 3He- 4He diffusion. Values tabulated in

Landolt-Bornstein 1481 for helium agree to within about . 10 percent.

3. ATOMIC HYDROGEN

To ensure better consistency in the mixture tables, the tables of viscosity and

thermal conductivity of atomic hydrogen tabulated by Svehla 1231 were used even though

some disagreement with the later Hanley, et al. 1141 values occurred. The disagree-

ment amounts to less than six percent In viscosity and eight percent in thermal conduc-
tivity. The diffusion coefficients, obtained from the work of Mata [52] were eitrapolated

above 2000 K assuming a logarithmic dependence on temperature. Possibly a ten percent

uncertainty is reliable.

4. HYDROGEN

Three sets of tables for viscosity, by Maitland and Smith [421 , Watson 1431 , and

Hanley, McCarty, and Intemann 1141 show insignificant differences between 100 and 2000 K.

These were extrapolated to 3000 K to parallel the lower earlier tables of Bambanek 1481
and Svehla [231. An error of a few percent below 1000 K increasing to 5-10 percent at

3000 K appears possible.

The thermal conductivity values recommended in 128,291 to 1000 K were extrapolated
to 3000 K to merge with the earlier values of 1231 . The uncertainty should be a few

k~
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percent below 500 K, this increasing to possibly ten percent at the highest temperatures

tabulated.

A plot of the self diffusion coefficient values tabulated by D'Ans-Lax 1491 and

in Landolt-Bornatein 1501 revealed an almost linear variation of log D with log T. The

tabulated values, obtained from this graph (extrapolated where necessary), should be

accurate to five percent below 500 K, the uncertainty increasing to ten to fifteen percent
at 3000 K.

5. OTHER PURE SUBSTANCES

While the properties of helium, hydrogen, and deuterium discussed above were

generated by the various methods there described, for other pure substances such as

argon, fluorine, and nitrogen the parameters of Svehla [281 were used with the Lennard-

Jones 6-12 potential first to generate the tabular values in order 4o achieve the maximum

consistency in the tables for the mixtures. Parameters for substances not considered

by Svehla were estimated using procedures identical or similar to those that he used.

A collection of the parameters obtained in this way appears in Table 118.

No table of intermolecular parameters for all the gas pairs considered here is
given as many of the tables* were generated from a computer program in wh~ich the mix-
ture parameters were internally generated from the pure component values. The usual

ra, 561 methods for generating the parameters for mixtures were followed,

6. MIXTURES

For all mixtures, the viscosities tabulated under the mixed heading are the

viscosities of a hypothetical mixed gas, as described in the text following Eq. (6) where

the parameters used in the potential are obtained using the appropriate combination rules

with the pure substance parameters of Table 118. The thermal conductivities tabulated

under the mixed heading are for an equimolar mixture and assume a linear dependence

on composition while the diffusion coefficients are for a hypothetical mixed gas,

Experimental data are lacking for many of the systems of mixtures, The error

in our tables can be assumed, in general, to be about twenty percent greater than the

larger of the two uncertainties for the pure component viscosities or diffusion coefficients.

For thermal oonduotivitiss for systems for which the pure component molocular weights

differ by less than a factor of four this should also apply. For thermal conductivity of

systems of more disparate molecular weights, greater error may occur.

V Minor differencesi et in a P " ses between values of properties for the same substance
tabulated in (11 and [21 and thus also in the different tables reproduced here.
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VI. TABLES OF RECOMMENDED VALUES
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TABLE 117. COLLISION INTEGRAL AND ANOTHER FUNCTION FOR THE
LENNARD-JONES 6-12 POTENTIAL FUNCTION

T* Rtl A T* Rli C 2  A

10 0.7422 0.8242 1.1105 55 0.5674 0.6405 1.1287
11 0.7306 0.8124 1.1119 56 0.5658 0.6387 1.1288
12 0.7202 0.8017 1.1131 57 0.5642 0.6370 1.12b9
13 0.7109 0.7921 1.1142 58 0.5627 0.6353 1.1291
14 0.7025 0.7834 1.1152 59 0.5612 0.6337 1.1292

15 0.6948 0.7754 1.1161 60 0.5598 0.6322 1.1293
16 0.6877 0.7681 1.1169 61 0.5584 0.6306 1.1294
17 0.6811 0.7612 1.1176 62 0.5570 0.6290 1,1295
18 0.6750 0.7549 1.1183 63 0.5556 0.6275 1.1297
19 0.6693 0.7489 1,1190 64 0.5542 0.6260 1.1298

20 0.6640 0.7433 1.1195 65 0.5528 0.6246 1.1299
21 0.6598 0.7383 1.1201 66 0.5514 0.6232 1.1300
22 0.6542 0.7333 1.1206 67 0.5501 0.6218 1.1301
23 0.6496 0.7283 1.1211 68 0.5489 0.6205 1.1301
24 0.6453 0.7237 1.1215 69 0.5477 0.6191 1.1302
25 0.6413 0.7194 1.1219 70 0.5465 0.6177 1,1303
26 0.6374 0.7153 1.1223 71 0.5453 0.6164 1.1304
27 0.6336 0.7113 1.1227 72 0.5441 0.6151 1.1305
28 0.6301 0.7076 1.1231 73 0.5429 0.6139 1.1305
29 0.6267 0.7040 1.1234 74 0.5417 0.6126 1.1306

30 0.6234 0.7005 1.1237 75 0.5406 0,6113 1.1307
31 0.6203 0.6972 1.1240 76 0.5395 0.6101 1.1308
32 0.6172 0.6939 1.1244 77 0.5384 0.6089 1.1309
33 0.6143 0.6908 1.1247 78 0.5373 0.6077 1.1309
34 0,6114 0.6878 1.1249 79 0.5362 0.6065 1.1310

35 0.6086 0.6849 1.1252 80 0.5352 0.6053 1.1311
36 0.6060 0.6820 1.1254 81 0.5341 0.6042 1,1312
37 0.6035 0.6793 1.1257 82 0.5331 0.6031 1.1313
38 0.6010 0.6766 1.1269 83 0.5321 0.6020 1.1313
39 0.5986 0.6741 1.1261 84 0.5311 0.6009 1.1314

40 0.5962 0.6715 1.1263 85 0.5301 0.5998 1.1315
41 0.5940 0.6690 1.1265 86 0.5291 0.5988 1.1316
42 0.5919 0.6665 1.1267 87 0.5282 0.5977 1.1316
43 0.5897 0.6640 1.1268 88 0.5272 0.5961 1.1317
44 0.5876 0.6620 1.1270 89 0,5263 0.5956 1.1317

45 0.5854 0.6599 1.1272 90 0.5254 0.5946 1.1318
46 0.5835 0.6578 1.1274 91 0.5245 0.5936 1.1318
47 0.5816 0.6557 1.1276 92 0. 5236 0.5926 1.1318
48 0.5797 0.6537 1.1277 93 0.5227 0.5917 1.1319
49 0.5778 0.6517 1.1279 94 0.5218 0.5907 1.1319

50 0.5759 0.6490 1.1.281 95 0.5209 0.5897 1.1320
51 0.5741 0.6477 1.1282 90 0.5200 0.5888 1.1320
52 0.5723 0.6458 1.1283 97 0.5191 0.5879 1.1321
53 0.5706 0.6440 1.1285 98 0.5183 0.5869 1.1321
54 0.5690 0.6422 1.1286 99 0.5175 0.5860 1.1322

100 0.5167 0.5851 1.132:3

..........
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TA BLE 118. LENNARD-JONES 6-12 PARAMETERS FOR PURE GASES

Gas c/K(°K) • (4) 1/4•"

He 10.22 2.551 0.49980
N2  113.50 3.566 0.18894
A 138.20 3.287 0.15822
H2  59.70 2.827 0.70430
D 35.20 2.664 0.70712
NNHS 558.30 2.900 0.24232
ND3 337.00 2.900 0.22357
N2H114  700.00 3.180 0.17665
N2D,j 462.00 3.380 0.16664
F2  112.60 3.3B7 0.16223
F 112.60 2.968 0.22942
Nr3 175.00 4.154 0.11868
N2 F4  240.00 3.880 0.09805
C1Fo 448.30 4.900 0.08770
HF 330.00 3.148 0.22357
DF 199.10 2.826 0.21223
HC1 344.70 3.339 0.16659
DCl 208.00 2.980 0.16340
H 37.00J 2.701 0.99210
D32 21 2.952 0,50000

I


